Showing posts with label battery. Show all posts
Showing posts with label battery. Show all posts

Friday, May 28, 2010

IPS gets 100mA from stamp-sized cells



IPS' largest rechargeable, thin-film lithium micro-energy cell is about the size of two postage stamps (50 mm x 25 mm), and some 170 µm thin, but it claims 2.5mAh capacity and continuous current output of 100mA.
Tim Bradow, VP of business development at IPS, says that's enough for a wide range of products. This cell can provide backup power for real time clocks, memory devices, and solid-state drives, and can store the ambient energy collected by solar, piezoelectric, or thermoelectric energy harvesters to power wireless sensors, powered cards, active RFID tags, watches, consumer electronics and medical devices. Bradow also describes products in development that include remote controls that replace infrared diodes with low power RF signals and micro energy cells continuously trickle charged by solar cells, and wireless automotive switches that look to replace the cost and weight of copper wiring with RF signals and micro energy cells continually recharged with vibrational energy harvesting.

Cymbet makes ‘batteries-in-a-chip’




Cymbet Corp. uses a similar LiPON solid electrolyte, but in an even smaller form factor, for a battery-in-a-chip package that aims to make local energy storage just another electronic component on the board or in the SiP. The chip-scale batteries are finding traction for embedded backup power to replace coin cells or supercapacitors in backing up memory, microcontrollers, and real time clocks in electronic systems.
These chip-like rechargeable lithium-based batteries, with nominal capacity of 50µAh in an 8x8 mm package, are made on silicon wafers with conventional deposition and etch tools, though unconventional materials. The chips withstand up to 260°C, so they can be reflow soldered in normal board assembly. They are sold as a bare die, or packaged with a power management ASIC in a SiP. Cymbet's power management IC converts and regulates input ranging from 2.5V to 5.5V and a steady 3.3V output.

Twitter Delicious Facebook Digg Stumbleupon Favorites More